Academic Program Department: Physics Major: B.S. in Physics/ Astrophysics	(2a) What are these learning outcomes? Students graduating with a degree should be able to: Written Communication Write up the results of theoretical calculations and laboratory experiments in a clear and concise manner that incorporates the stylistic conventions used by physicists worldwide Written reports on multiple projects associated with upper-division astrophysics courses	(3) Other than GPA, what data/evidence are used to determine that graduates have achieved stated outcomes for the degree? (e.g., capstone course, portfolio review, licensure examination)? Written Communication Grading of homework and lab reports	(4) Who interprets the evidence? What is the process? Written Communication Grading by Instructors, Teaching Assistants	(5) How are the findings used? Written Communication Trends in class performance are noted and remedial actions discussed
(1) Have formal learning outcomes been developed?	Oral Communication Orally present scientific background, hypothesis, data, analysis, and results, at the level of upper-division astrophysics courses	Oral Communication Oral presentations in certain upper-division astrophysics courses in front of undergraduate peers, teaching assistants and course instructor	Oral Communication Instructor evaluates talks	Oral Communication
Yes/No (6) Date of the last Academic Senate Review? [i.e. 2015- 16 if the review takes place this academic year] 2010-11	Quantitative Reasoning: Calculate outcomes for a wide variety of problems in mechanics, electromagnetism, quantum mechanics, and thermodynamics High-level grasp of mathematics, calculus, matrix methods, probability, estimations, and calculation using realistic numbers and units Familiarity with quantitative computing in the form of Mathematica, Matlab, and/or scientific programming in Python or C Use basic laboratory data analysis techniques, including distinguishing statistical and systematic errors, propagating errors, and representing data graphically Convert a physical situation articulated in English to a mathematical formulation, and then analyze it quantitatively Apply advanced mathematical tools, including Fourier series and transforms, abstract linear algebra, and functions of a complex variable	Quantitative Reasoning These aspects are pervasive in every core physics course, so no additional evidence is justified	Quantitative Reasoning Grading by Instructors, Teaching Assistants	Quantitative Reasoning Trends in class performance are noted and remedial actions discussed
	Information Literacy Access information on a topic from a variety of sources, and be able to learn new things on one's own Research literature in connection with astrophysics projects	Information Literacy	Information Literacy	Information Literacy
	Critical Thinking Distill a question about the physical world into the relevant and/or dominant effects, isolating (and quantifying) the key contribution(s) Evaluate a mathematical or theoretical construct for	Critical Thinking These aspects are pervasive in every core physics course, so no additional evidence is justified	Critical Thinking Grading by Instructors, Teaching Assistants	Critical Thinking Trends in class performance are noted and remedial actions discussed

Please date the form	logical self-consistency			
	Recognize how observation, experiment and theory work together to continue to expand the frontiers of knowledge of the physical universe			
	Exercise the use of physical intuition, including the ability to "guess" an approximate or conceptual answer to a physics problem and recognize whether or not the result of a calculation makes physical sense			
	All other items not color coded	All other items not color coded	All other items not color coded	All other items not color coded
	(2b) Where are the learning outcomes published? Please provide your department/program website address.			

Academic Program	(2a) What are these learning outcomes? <u>Students graduating with a degree should be able to:</u>	(3) Other than GPA, what data/evidence are used to determine that graduates have achieved stated outcomes for the degree? (e.g., capstone course, portfolio review, licensure examination)?	(4) Who interprets the evidence? What is the process?	(5) How are the findings used?
Department:	Written Communication	Written Communication	Written Communication	Written Communication
Physics Major:	Write up the results of theoretical calculations and laboratory experiments in a clear and concise manner that incorporates the stylistic conventions used by physicists worldwide	Grading of homework and lab reports	Grading by Instructors, Teaching Assistants	Trends in class performance are noted and remedial actions discussed
B.A. in Physics				
D.A. III I Hysics	Oral Communication	Oral Communication	Oral Communication	Oral Communication
(1) Have formal learning outcomes been developed?				
Yes/No	Quantitative Reasoning:	Quantitative Reasoning	Quantitative Reasoning	Quantitative Reasoning
1 (5/110	Calculate outcomes for a wide variety of problems in mechanics, electromagnetism, quantum mechanics, and thermodynamics	These aspects are pervasive in every core physics course, so no additional evidence is justified	Grading by Instructors, Teaching Assistants	Trends in class performance are noted and remedial actions discussed
	High-level grasp of mathematics, calculus, matrix methods, probability, estimations, and calculation using realistic numbers and units			
(6) Date of the last	Familiarity with quantitative computing in the form of Mathematica, Matlab, and/or scientific programming in Python or C			
Academic Senate Review? [i.e. 2015-	Use basic laboratory data analysis techniques, including distinguishing statistical and systematic errors, propagating errors, and representing data graphically			
16 if the review takes place this academic year]	Convert a physical situation articulated in English to a mathematical formulation, and then analyze it quantitatively			
	Information Literacy	Information Literacy	Information Literacy	Information Literacy
2010-11	Access information on a topic from a variety of sources, and be able to learn new things on one's own			
	Critical Thinking	Critical Thinking	Critical Thinking	Critical Thinking
	Distill a question about the physical world into the relevant and/or dominant effects, isolating (and quantifying) the key contribution(s)	These aspects are pervasive in every core physics course, so no additional evidence is justified	Grading by Instructors, Teaching Assistants	Trends in class performance are noted and remedial actions discussed
	Evaluate a mathematical or theoretical construct for logical self-consistency			
	Recognize how observation, experiment and theory work together to continue to expand the frontiers of knowledge of the physical universe			
Please date the form	Exercise the use of physical intuition, including the ability to "guess" an approximate or conceptual answer			

to a physics problem and recognize whether or not the result of a calculation makes physical sense			
All other items not color coded	All other items not color coded	All other items not color coded	All other items not color coded
(2b) Where are the learning outcomes published? Please provide your department/program website address.			

Academic Program Department:	(2a) What are these learning outcomes? Students graduating with a degree should be able to: Written Communication	(3) Other than GPA, what data/evidence are used to determine that graduates have achieved stated outcomes for the degree? (e.g., capstone course, portfolio review, licensure examination)? Written Communication	(4) Who interprets the evidence? What is the process? Written Communication	(5) How are the findings used? Written Communication
Physics Major: B.S. in Physics/Biophysics	Writing up the results of theoretical calculations and laboratory experiments in a clear and concise manner that incorporates the stylistic conventions used by physicists worldwide Written reports on multiple projects associated with upper-division biophysics courses	Grading of homework and lab reports	Grading by Instructors, Teaching Assistants	Trends in class performance are noted and remedial actions discussed
(1) Have formal learning outcomes been developed?	Oral Communication Orally present scientific background, hypothesis, data, analysis, and results of research in biophysics	Oral Communication Oral presentation in front of undergraduate peers, TAs, and course instructor in certain senior level research courses	Oral Communication Instructor evaluates talks	Oral Communication
Yes/No (6) Date of the last Academic Senate Review? [i.e. 2015- 16 if the review takes place this academic year] 2010-11	Quantitative Reasoning: Calculate outcomes for a wide variety of problems in mechanics, electromagnetism, quantum mechanics, and thermodynamics High-level grasp of mathematics, calculus, matrix methods, probability, estimations, and calculation using realistic numbers and units Familiarity with quantitative computing in the form of Mathematica, Matlab, and/or scientific programming in Python or C Use basic laboratory data analysis techniques, including distinguishing statistical and systematic errors, propagating errors, and representing data graphically Convert a physical situation articulated in English to a mathematical formulation, and then analyze it quantitatively Apply advanced mathematical tools, including Fourier series and transforms, abstract linear algebra, and functions of a complex variable	Quantitative Reasoning These aspects are pervasive in every core physics course, so no additional evidence is justified	Quantitative Reasoning Grading by Instructors, Teaching Assistants	Quantitative Reasoning Trends in class performance are noted and remedial actions discussed
	Information Literacy Access information on a topic from a variety of sources, and be able to learn new things on one's own Research literature in connection with biophysics projects	Information Literacy	Information Literacy	Information Literacy
	Critical Thinking Distill a question about the physical world into the relevant and/or dominant effects, isolating (and quantifying) the key contribution(s) Evaluate a mathematical or theoretical construct for	Critical Thinking These aspects are pervasive in every core physics course, so no additional evidence is justified	Critical Thinking Grading by Instructors, Teaching Assistants	Critical Thinking Trends in class performance are noted and remedial actions discussed

Please date the form	logical self-consistency			
	Recognize how observation, experiment and theory work together to continue to expand the frontiers of knowledge of the physical universe			
	Exercise the use of physical intuition, including the ability to "guess" an approximate or conceptual answer to a physics problem and recognize whether or not the result of a calculation makes physical sense			
	Solve problems in biological, biochemical, and biomedical sciences using rigorous physics-based approaches			
	All other items not color coded	All other items not color coded	All other items not color coded	All other items not color coded
	(2b) Where are the learning outcomes published? Please provide your department/program website address.			

Academic Program	(2a) What are these learning outcomes? Students graduating with a degree should be able to:	(3) Other than GPA, what data/evidence are used to determine that graduates have achieved stated outcomes for the degree? (e.g., capstone course, portfolio review, licensure examination)?	(4) Who interprets the evidence? What is the process?	(5) How are the findings used?
Department:	Written Communication	Written Communication	Written Communication	Written Communication
Physics Major:	Write up the results of theoretical calculations and laboratory experiments in a clear and concise manner that incorporates the stylistic conventions used by physicists worldwide	Grading of homework and lab reports	Grading by Instructors, Teaching Assistants	Trends in class performance are noted and remedial actions discussed
B.S. in Physics			Oral Commission from	
D.S. III I Hysics	Oral Communication	Oral Communication	Oral Communication	Oral Communication
(1) Have formal learning outcomes been developed?				
Yes/No	Quantitative Reasoning:	Quantitative Reasoning	Quantitative Reasoning	Quantitative Reasoning
105/110	Calculate outcomes for a wide variety of problems in mechanics, electromagnetism, quantum mechanics, and thermodynamics	These aspects are pervasive in every core physics course, so no additional evidence is justified	Grading by Instructors, Teaching Assistants	Trends in class performance are noted and remedial actions discussed
	High-level grasp of mathematics, calculus, matrix methods, probability, estimations, and calculation using realistic numbers and units			
(6) Date of the last	Familiarity with quantitative computing in the form of Mathematica, Matlab, and/or scientific programming in Python or C			
Academic Senate Review? [i.e. 2015-	Use basic laboratory data analysis techniques, including distinguishing statistical and systematic errors, propagating errors, and representing data graphically			
16 if the review takes place this academic year]	Convert a physical situation articulated in English to a mathematical formulation, and then analyze it quantitatively			
2010-11	Apply advanced mathematical tools, including Fourier series and transforms, abstract linear algebra, and functions of a complex variable			
	Information Literacy	Information Literacy	Information Literacy	Information Literacy
	Access information on a topic from a variety of sources, and be able to learn new things on one's own			
	Critical Thinking	Critical Thinking	Critical Thinking	Critical Thinking
	Distill a question about the physical world into the relevant and/or dominant effects, isolating (and quantifying) the key contribution(s)	These aspects are pervasive in every core physics course, so no additional evidence is justified	Grading by Instructors, Teaching Assistants	Trends in class performance are noted and remedial actions discussed
	Evaluate a mathematical or theoretical construct for logical self-consistency			
Please date the form	Recognize how observation, experiment and theory work together to continue to expand the frontiers of			

knowledge of the physical universe Exercise the use of physical intuition, including the ability to "guess" an approximate or conceptual answer to a physics problem and recognize whether or not the result of a calculation makes physical sense			
All other items not color coded	All other items not color coded	All other items not color coded	All other items not color coded
(2b) Where are the learning outcomes published? Please provide your department/program website address.			

Academic Program Department: Physics	(2a) What are these learning outcomes? Students graduating with a degree should be able to: Written Communication Write up the results of theoretical calculations and	(3) Other than GPA, what data/evidence are used to determine that graduates have achieved stated outcomes for the degree? (e.g., capstone course, portfolio review, licensure examination)? Written Communication Grading of homework and lab reports	(4) Who interprets the evidence? What is the process? Written Communication Grading by Instructors, Teaching	(5) How are the findings used? Written Communication Trends in class performance are
Major:	laboratory experiments in a clear and concise manner that incorporates the stylistic conventions used by physicists worldwide		Assistants	noted and remedial actions discussed
B.S. in Physics <u>/</u> Computational Physics	Oral Communication N/A	Oral Communication	Oral Communication	Oral Communication
 (1) Have formal learning outcomes been developed? Yes/No (6) Date of the last Academic Senate Review? [i.e. 2015- 16 if the review takes place this academic year] 	Quantitative Reasoning: Calculate outcomes for a wide variety of problems in mechanics, electromagnetism, quantum mechanics, and thermodynamics High-level grasp of mathematics, calculus, matrix methods, probability, estimations, and calculation using realistic numbers and units Familiarity with quantitative computing in the form of Mathematica, Matlab, and/or scientific programming in Python or C Use basic laboratory data analysis techniques, including distinguishing statistical and systematic errors, propagating errors, and representing data graphically Convert a physical situation articulated in English to a mathematical formulation, and then analyze it quantitatively Apply advanced mathematical tools, including Fourier series and transforms, abstract linear algebra, and functions of a complex variable	Quantitative Reasoning These aspects are pervasive in every core physics course, so no additional evidence is justified	Quantitative Reasoning Grading by Instructors, Teaching Assistants	Quantitative Reasoning Trends in class performance are noted and remedial actions discussed
2010-11	Information Literacy Access information on a topic from a variety of sources, and be able to learn new things on one's own	Information Literacy	Information Literacy	Information Literacy
	Critical Thinking Distill a question about the physical world into the relevant and/or dominant effects, isolating (and quantifying) the key contribution(s) Evaluate a mathematical or theoretical construct for logical self-consistency Recognize how observation, experiment and theory work together to continue to expand the frontiers of	Critical Thinking These aspects are pervasive in every core physics course, so no additional evidence is justified	Critical Thinking Grading by Instructors, Teaching Assistants	Critical Thinking Trends in class performance are noted and remedial actions discussed

Please date the form	knowledge of the physical universe Exercise the use of physical intuition, including the ability to "guess" an approximate or conceptual answer to a physics problem and recognize whether or not the result of a calculation makes physical sense Utilize physics-based computational / programming techniques for simulation based solutions to problems in physics, information science, and for instrumentation			
	development All other items not color coded	All other items not color coded	All other items not color coded	All other items not color coded
	(2b) Where are the learning outcomes published? Please provide your department/program website address.			

Academic Program Department: Physics Major: B.S. in Physics <u>/</u> Earth Sciences	(2a) What are these learning outcomes? Students graduating with a degree should be able to: Written Communication Write up the results of theoretical calculations and laboratory experiments in a clear and concise manner that incorporates the stylistic conventions used by physicists worldwide Oral Communication N/A	(3) Other than GPA, what data/evidence are used to determine that graduates have achieved stated outcomes for the degree? (e.g., capstone course, portfolio review, licensure examination)? Written Communication Grading of homework and lab reports Oral Communication	(4) Who interprets the evidence? What is the process? Written Communication Grading by Instructors, Teaching Assistants Oral Communication	(5) How are the findings used? Written Communication Trends in class performance are noted and remedial actions discussed Oral Communication
 (1) Have formal learning outcomes been developed? Yes/No (6) Date of the last Academic Senate Review? [i.e. 2015- 16 if the review takes place this academic year] 	Quantitative Reasoning: Calculate outcomes for a wide variety of problems in mechanics, electromagnetism, quantum mechanics, and thermodynamics High-level grasp of mathematics, calculus, matrix methods, probability, estimations, and calculation using realistic numbers and units Familiarity with quantitative computing in the form of Mathematica, Matlab, and/or scientific programming in Python or C Use basic laboratory data analysis techniques, including distinguishing statistical and systematic errors, propagating errors, and representing data graphically Convert a physical situation articulated in English to a mathematical formulation, and then analyze it quantitatively Apply advanced mathematical tools, including Fourier series and transforms, abstract linear algebra, and functions of a complex variable	Quantitative Reasoning These aspects are pervasive in every core physics course, so no additional evidence is justified	Quantitative Reasoning Grading by Instructors, Teaching Assistants	Quantitative Reasoning Trends in class performance are noted and remedial actions discussed
2010-11	Information Literacy Access information on a topic from a variety of sources, and be able to learn new things on one's own	Information Literacy	Information Literacy	Information Literacy
	Critical Thinking Distill a question about the physical world into the relevant and/or dominant effects, isolating (and quantifying) the key contribution(s) Evaluate a mathematical or theoretical construct for logical self-consistency Recognize how observation, experiment and theory work together to continue to expand the frontiers of	Critical Thinking These aspects are pervasive in every core physics course, so no additional evidence is justified	Critical Thinking Grading by Instructors, Teaching Assistants	Critical Thinking Trends in class performance are noted and remedial actions discussed

Please date the form	knowledge of the physical universe Exercise the use of physical intuition, including the ability to "guess" an approximate or conceptual answer to a physics problem and recognize whether or not the result of a calculation makes physical sense Solve problems in earth science, oceanography using rigorous physics-based approaches			
	All other items not color coded	All other items not color coded	All other items not color coded	All other items not color coded
	(2b) Where are the learning outcomes published? Please provide your department/program website address.			

Academic Program	(2a) What are these learning outcomes? <u>Students graduating with a degree should be able to:</u>	(3) Other than GPA, what data/evidence are used to determine that graduates have achieved stated outcomes for the degree? (e.g., capstone course, portfolio review, licensure examination)?	(4) Who interprets the evidence? What is the process?	(5) How are the findings used?
Department: Physics Major: B.S. in Physics/Materials	Written Communication Write up the results of theoretical calculations and laboratory experiments in a clear and concise manner that incorporates the stylistic conventions used by physicists worldwide Write research paper on materials project in journal format	Written Communication Grading of homework and lab reports	Written Communication Grading by Instructors, Teaching Assistants	Written Communication Trends in class performance are noted and remedial actions discussed
Physics (1) Have formal learning outcomes	Oral Communication Orally present scientific background, hypothesis, data, analysis, and results of research in condensed matter physics / materials science	Oral Communication Oral presentation in front of undergraduate peers, TAs, and course instructor in certain senior level research courses	Oral Communication Instructor evaluates talk	Oral Communication
been developed? Yes/No (6) Date of the last Academic Senate Review? [i.e. 2015- 16 if the review takes place this academic year] 2010-11	Quantitative Reasoning: Calculate outcomes for a wide variety of problems in mechanics, electromagnetism, quantum mechanics, and thermodynamics High-level grasp of mathematics, calculus, matrix methods, probability, estimations, and calculation using realistic numbers and units Familiarity with quantitative computing in the form of Mathematica, Matlab, and/or scientific programming in Python or C Use basic laboratory data analysis techniques, including distinguishing statistical and systematic errors, propagating errors, and representing data graphically Convert a physical situation articulated in English to a mathematical formulation, and then analyze it quantitatively Apply advanced mathematical tools, including Fourier series and transforms, abstract linear algebra, and functions of a complex variable	Quantitative Reasoning These aspects are pervasive in every core physics course, so no additional evidence is justified	Quantitative Reasoning Grading by Instructors, Teaching Assistants	Quantitative Reasoning Trends in class performance are noted and remedial actions discussed
	Information Literacy Access information on a topic from a variety of sources, and be able to learn new things on one's own Research literature in connection with materials project	Information Literacy	Information Literacy	Information Literacy
	Critical Thinking Distill a question about the physical world into the relevant and/or dominant effects, isolating (and quantifying) the key contribution(s) Evaluate a mathematical or theoretical construct for	Critical Thinking These aspects are pervasive in every core physics course, so no additional evidence is justified	Critical Thinking Grading by Instructors, Teaching Assistants	Critical Thinking Trends in class performance are noted and remedial actions discussed

Please date the form	logical self-consistency Recognize how observation, experiment and theory work together to continue to expand the frontiers of knowledge of the physical universe			
	Exercise the use of physical intuition, including the ability to "guess" an approximate or conceptual answer to a physics problem and recognize whether or not the result of a calculation makes physical sense			
	Develop critical thinking skills in one or more sub-topics of contemporary condensed matter physics			
	All other items not color coded	All other items not color coded	All other items not color coded	All other items not color coded
	(2b) Where are the learning outcomes published? Please provide your department/program website address.			